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LE7TER TO THE EDITOR 

Exact series studies of self-avoiding walks on two-dimensional 
critical percolation clusters 

P M Lam? 
Fachbereich Physik, Universitat Essen, 4300 Essen 1, Federal Republic of Germany 

Received 21 June 1990 

Abstract. We present results of exact series studies of self-avoiding walks on percolation 
clusters on the square lattice performed very close to the percolation threshold and estimate 
the critical exponents U and y defined by the disorder averages of the mean square radius 
of gyration or the end-to-end distance and the number of self-avoiding walks, respectively. 
The self-avoiding walk configurations are enumerated exactly up to 35 steps. The result 
for Y indicates a large increase compared with the self-avoiding walks on fully occupied 
lattice. The result for y, however, indicates a behaviour similar to that on a fully occupied 
lattice. The result for U is completely different from that of Lee, Nakanishi and Kim. 

In this letter we treat the problem of self-avoiding random walks (SAWS) confined to 
clusters of the percolation problem in two dimensions. This problem is a direct analogue 
of the problem of linear-chain polymers trapped in a porous medium where excluded 
regions can occur with the length scales of the order of the persistence length of the 
chain. 

According to the Harris criteria [ 11, since the specific heat exponent a is positive, 
the critical behaviour of SAWS on a randomly diluted lattice would be expected to be 
different from that of an ordinary SAW for any amount of disorder. On the other hand, 
Harris [2] himself argued that the disorder average is very trivial and all critical 
exponents remain unchanged for any p > p c ,  where p represents the concentration of 
non-impurity sites and pc  is the percolation threshold. Also, a modified analysis of his 
criteria [2] indicates that the critical behaviour of an SAW is not affected by lattice 
dilution even though a is positive. This was partially supported by field theoretic 
calculations [3]. 

Later Lyklema and Kremer [4] presented an argument that randomness is irrelevant 
except at the percolation threshold. This was supported by Monte Carlo results [ 5 ]  
and real-space renormalization studies [6-81. Recently, however, Lee and Nakanishi 
[9] and Lee et a1 [lo] pointed out an error in the data analysis of the Monte Carlo 
result of [ 5 ]  and presented new Monte Carlo data of their own. They calculated the 
exponent vN, as a function of the number of steps N, for an SAW on the infinite 
percolation cluster at p = p c .  On the square lattice in two dimensions, with p = 0.59273, 
they found that up to the 25th step, v N  was monotonically increasing and beyond that 
it seems to emerge to the full lattice result. A similar behaviour was also found for 
three dimensions. 
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This crossover behaviour of vN appears to us to be somewhat unusual since at 
p = p c ,  the correlation length on the infinite cluster is infinite and the cluster structure 
is self-similar at all length scales. This crossover effect seems to indicate some sort of 
finite-size effect. Moreover we believe that the real-space renormalization group result 
[6-81 with the appearance of a new disorder fixed point right at p = p c  should be 
qualitatively correct. The purpose of this paper is to check the calculations of [9] and 
[IO] with an exact enumeration method. It turns out that since the number of SAW 

configurations on the infinite critical percolation clusters are much fewer than those 
on the fully occupied lattice, it is in fact possible to enumerate exactly all the self- 
avoiding walk configurations on the infinite cluster on the square lattice up to 35 steps. 
This is ten steps beyond the point where v N ,  in [9] and [lo], starts to cross over into 
the fully occupied lattice value. Therefore this is sufficient to check their results and 
in our case we have here only a disorder average over the different infinite percolation 
clusters. 

The infinite clusters are generated by the Leath [ll] cluster growth method. The 
centre site of the square lattice is taken as an occupied site and all the other sites are 
empty. Each of the growth sites of this occupied site are the four neighbour sites. In 
the next step, each of these four growth sites becomes either occupied or blocked 
randomly with probability p or (1 - p )  respective, where p = 0.592 73. In each sub- 
sequent step, the cluster sites are the occupied sites and the growth sites are the 
perimeter sites of this cluster which are at the same time unblocked, i.e. empty. The 
growth sites are then changed randomly into occupied or blocked sites respectively 
with probability p or (1 - p ) .  Thus at each step, the cluster can continue to grow in 
shells around the initial centre site, as long as the number of growth sites is finite. If 
at a certain step the number of growth sites becomes zero, the process has to restart 
again with one single occupied site at the centre of the lattice and all the other sites 
being empty. Only those clusters that are grown after more than 35 steps are kept. For 
each cluster, the SAWS always start from the centre site of the lattice, i.e. the first starting 
occupied site of the cluster. All SAW configurations on the generated cluster of occupied 
sites, starting from this centre site are enumerated using the backtracking method [ 121. 
We have checked our results by setting p = 1. In that case we obtain the known averaged 
squared radius of gyration and end-to-end distance of the fully occupied lattice up to 
N = 18. Our results for the average values of the squared radius of gyration GL, the 
end-to-end distance E L  and the number of SAW configurations CN are shown in table 
1. In table 1 of [lo], the values of the average radius of gyration and the end-to-end 
distance are given for the square lattice for N = 20 to be 3.45 * 0.04% and 9.41 f 0.05% 
respectively. These are quite different from our corresponding values 3.303 * 0.027 and 
8.942 f 0.103 respectively obtained from our table 1. 

Let R$ denote either the average squared radius of gyration or the squared 
end-to-end distance of N-step SAWS. Then asymptotically for large N 

R’, = AN2” 

where A is a proportionality constant. Taking the logarithm on both sides of equation 
(1) and then integrating both sides of the resulting equation from M to N one obtains 

jI In R: dn = ( N  - M )  In A + 2 v ( N  In N - N - M In M +  M )  

= NRL - M R L  - 2 ~ (  N - M ) .  (2) 
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Table 1. The average values of the number of SAW configurations C,, the squared radius 
of gyration G’, and the squared end-to-end distance E’, as functions of the number of 
steps N. 

N 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

261 * 13 
408 f 23 
645 f 43 
998 f 70 

1562f.119 
2415f 187 
3760f 296 
5838 f 459 
9088 * 691 

( 1421 f 1 10) x 10 
(2215f167)xlO 
(3480f274) x 10 
(5408f430)x 10 
(8491 f706) x 10 
(1314f 115) x 10’ 
(2057f 185)x lo2 
(3182f308)x lo2 
(4970f486) x 10’ 
(7722 f 825) x lo2 
(1210f129)x lo3 
(1891*223)X103 
(2979f348) x lo3 
(3996f488) X lo3 
(6297*843) X lo3 

(155Of253)x lo4 
(9793 1455) x io4 

G’, 

3.854f 0.023 
4.406 f 0.030 
4.994f 0.038 
5.617 f0.056 
6.256 f 0.078 
6.970f 0.096 
7.696 f 0.126 
8.478 f0.136 
9.262 f 0.164 

10.01Of 0.160 
10.9 13 f 0.178 
11.787 f0.163 
12.626* 0.175 
13.541 f0.157 
14.427f0.162 
15.400 f 0.147 
16.358f0.140 
17.403 * 0.129 
18.438 fO.110 
19.546 f 0.125 
20.646 f 0.106 
21.789 f 0.166 
23.099 * 0.223 
24.262 f 0.275 
25.617 f0.342 
26.749 f 0.391 

Defining the integral on the left-hand side of equation (2) as 
N 

Z(M, N )  = In R: dn 

one obtains an N-dependent exponent uN as 

E’, 

26.529 f 0.259 
30.538 f 0.396 
34.883 f 0.427 
39.530 f 0.681 
44.342 f 0.866 
49.746 f 1.094 
55.257f 1.357 
61.290* 1.450 
67.292f 1.712 
73.736f 1.618 
79.954f 1.819 
86.603 f 1.600 
92.998 f 1.773 
99.942 f 1.547 

106.696f 1.684 
114.190f 1.612 
121.585f 1.670 
129.859f 1.929 
138.038f 1.917 
147.028f 2.541 
155.937 f 2.429 
165.288 f3.233 
171.585f3.555 
180.405 f 4.286 
191.680f 4.574 
200.020 f 5.346 

(3) 

UN = [ N In R’, - M In R’, - I ( M ,  N)]/[2( N - M)]. (4) 

The integral I( M, N) is calculated using the Simpson rule. The lower limit M is chosen 
to be either 1 or 2 such that (N- M) is an even integer larger than or equal to four 
as required for the Simpson rule quadrature. The resulting uN obtained from using 
both the average squared radius of gyration and the squared end-to-end distance are 
shown in figure 1, plotted against 1/N. These data are obtained averaging over 500 
percolation clusters. The error bars are obtained by grouping the data into ten sets 
and calculating the standard deviations. Also shown in figure 1 are the results for uN 
for the case of the fully occupied lattice. These data are obtained using a Monte Carlo 
method called the incomplete enumeration method [13-181 up to 100 steps on the 
square lattice. The vN values obtained from both the averaged square radius of gyration 
and the end-to-end distance for the case of the fully occupied lattice approach 
asymptotically the exact value U = 0.75 in the limit N + 00 in a monotonic fashion. For 
the case of a SAW on the infinite percolation cluster, the vN values obtained from 



L834 Letter to the Editor 

n -I .- . . .  - 

- 

O S 9 1  

0.6 1 I 
I I I I t I I I I 

0 0.02 0.04 0 0 6  1/N 0.08 0.1 0 0.12 

Figure 1. The exponent vN plotted against 1/ N for the fully occupied lattice ( p  = 1 )  and 
the infinite percolation cluster ( p  = p c ) ,  obtained using average squared radius of gyration 
(Gh) and average squared end-to-end distance (Eh). 

both the average squared radius of gyration and the squared end-to-end distance 
increase monotonically with 1/ N up to N = 35 and seem to approach asymptotically 
the value Y = v, = 0.81 f 0.03. In both cases of G N  and E N  the values vN are always 
above the corresponding full lattice values for all N above 10. Up to N = 35 there is 
no crossover effect in the vN values. From our result we have to conclude that the 
crossover observed in [9] and [lo] must be spurious. 

The average number of walks of N steps CN is given asymptotically by 

CN = B N ~ - ' @  ( 5 )  

with B a proportionality constant, y a universal exponent and p a lattice dependent 
constant. Let QN be defined as 

Then integrating equation (6) from M to N and using equation ( 5 )  we can determine 
the N-dependent exponent y N  and the lattice dependent constant p N  

where 

and 

N In N - ( N  - 1) ln(N- 1) - M In M + ( M  - 1) ln(M - 1) 
In N-ln(N-1)-ln M+ln(M-1) f ( M ,  N )  = 
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Just as for the calculation of the exponent v N ,  we choose M here to be either 2 or 3 
such that ( N  - M )  is an even integer and the integral J ( M ,  N )  is evaluated using the 
Simpson rule. The resulting values of y N  and p N  are shown in figure 2 for both the 
full (p  = 1) and the diluted ( p  = p c )  lattices, plotted against 1/N. We find in the full 
lattice case y = ym = 1.30 f 0.05 and p = pm = 2.67 * 0.03. For the diluted lattice, we 
have y = 1.301 0.1 and p = 1.53 f0.05. Since p corresponds to an effective coordination 
number for the  SAW^, it is the small value of p in the disorder case that enables us to 
enumerate the SAW configurations up to large number of steps N = 35. 

We can conceive of two sources that can cause the discrepancy between our result 
for v and that of [9] and [lo]. One is of course that we have enumerated our SAW 

configurations exactly while in [9] and [lo] they have a disorder average over the 
percolation clusters and another configurational average over the Monte Carlo gener- 
ated SAW configurations. A second source of discrepancy is the following. In [9] and 
[lo], the critical percolation cluster is first generated on a fixed cell of size L x L, where 
L is the linear size of the cell. The SAWS are started on randomly chosen sites on this 
cluster and periodic boundary conditions are imposed on the L x  L cell in both 
directions for the case that the SAWS get outside of the original cell. The validity of 
such a procedure is not clear. 

We have purposely used a relatively small number of SAW steps N = 35, and low 
spatial dimensions d = 2,  but exact enumeration for the SAW configurations to make 
a clear comparison with [9] and [lo]. Our results clearly show that the crossover effect 
of the correlation length exponent v into the fully occupied lattice value found in 
those references is spurious. The exponent v for an SAW on the infinite percolation 
cluster is in fact different and larger than that on the fully occupied lattice. We find 
in two dimensions, v = 0.81 * 0.03, compared with the exact value v = 0.75 on the full 
lattice. We believe that our results presented here are the only clear numerical evidence 
so far on the controversial problem of SAWS on disorder media. To get a better estimate 
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Figure 2. The exponent y N  and the lattice dependent constant f i N  plotted against 1/N 
for the fully occupied lattice ( po = 1 )  and the infinite percolation cluster ( p  = p J .  
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of the exponent v one has to use SAWS of larger step numbers, i.e. by Monte Carlo 
methods. Also one has to calculate this exponent in three dimensions. The incomplete 
enumeration method [13-181 is most suited for this purpose. Work in this direction is 
in progress and will be reported elsewhere. 

Finally we want to point out that, very recently, Meir and Harris [ 191 also confirmed 
that SAWS on diluted lattices belong to a different universality class than on a pure 
lattice, using a cumulant real-space renormalization group and &-expansion. 

This work has been supported by the Sonderforschungsbereich 237 Unordnung and 
grope Fluktuationen of the Deutsche Forschungsgemeinschaft. 
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